Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Magn Reson ; 358: 107603, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142565

RESUMO

In this paper, we present a chip-based C-band ODNP platform centered around an NMR-on-a-chip transceiver and a printed microwave (MW) Alderman-Grant (AG) coil with a broadband tunable frequency range of 528MHz. The printable ODNP probe is optimized for a high input-power-to-magnetic-field conversion-efficiency, achieving a measured ODNP enhancement factor of -151 at microwave power levels of 33.3dBm corresponding to 2.1W. NMR measurements with and without microwave irradiation verify the functionality and the state-of-the-art performance of the proposed ODNP platform. The wide tuning range of the system allows for indirect measurements of the EPR signal of the DNP agent by sweeping the microwave excitation frequency and recording the resulting NMR signal. This feature can, e.g., be used to detect line broadening of the DNP agent. Moreover, we demonstrate experimentally that the wide tuning range of the new ODNP platform can be used to perform multi-tone microwave excitation for further signal enhancement: Using a 10mM TEMPOL solution, we improved the enhancement by a factor of two.

2.
Small Methods ; 5(9): e2100376, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34928064

RESUMO

Nanoscale magnetic systems play a decisive role in areas ranging from biology to spintronics. Although, in principle, THz electron paramagnetic resonance (EPR) provides high-resolution access to their properties, lack of sensitivity has precluded realizing this potential. To resolve this issue, the principle of plasmonic enhancement of electromagnetic fields that is used in electric dipole spectroscopies with great success is exploited, and a new type of resonators for the enhancement of THz magnetic fields in a microscopic volume is proposed. A resonator composed of an array of diabolo antennas with a back-reflecting mirror is designed and fabricated. Simulations and THz EPR measurements demonstrate a 30-fold signal increase for thin film samples. This enhancement factor increases to a theoretical value of 7500 for samples confined to the active region of the antennas. These findings open the door to the elucidation of fundamental processes in nanoscale samples, including junctions in spintronic devices or biological membranes.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/instrumentação , Desenho de Equipamento/métodos , Simulação por Computador , Campos Eletromagnéticos , Nanotecnologia
3.
Magn Reson (Gott) ; 2(2): 699-713, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37905224

RESUMO

In this paper, we present an in-depth analysis of a voltage-controlled oscillator (VCO)-based sensing method for electron spin resonance (ESR) spectroscopy, which greatly simplifies the experimental setup compared to conventional detection schemes. In contrast to our previous oscillator-based ESR detectors, where the ESR signal was encoded in the oscillation frequency, in the amplitude-sensitive method, the ESR signal is sensed as a change of the oscillation amplitude of the VCO. Therefore, using VCO architecture with a built-in amplitude demodulation scheme, the experimental setup reduces to a single permanent magnet in combination with a few inexpensive electronic components. We present a theoretical analysis of the achievable limit of detection, which uses perturbation-theory-based VCO modeling for the signal and applies a stochastic averaging approach to obtain a closed-form expression for the noise floor. Additionally, the paper also introduces a numerical model suitable for simulating oscillator-based ESR experiments in a conventional circuit simulator environment. This model can be used to optimize sensor performance early on in the design phase. Finally, all presented models are verified against measured results from a prototype VCO operating at 14 GHz inside a 0.5 T magnetic field.

4.
Chem Commun (Camb) ; 57(6): 733-736, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33346270

RESUMO

We report the synthesis of the lanthanide-(bis)boryloxide complex [Dy{OB(NArCH)2}2(THF)4][BPh4] (2Dy, Ar = 2,6-Pri2C6H3), with idealised D4h@Dy(iii) point-group symmetry. Complex 2Dy exhibits single-molecule magnetism (SMM), with one of the highest energy barriers (Ueff = 1565(298) K) of any six-coordinate lanthanide-SMM. Complex 2Dy validates electrostatic model predictions, informing the future design of lanthanide-SMMs.

5.
J Phys Condens Matter ; 33(8): 085703, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33290269

RESUMO

Low-temperature magnetoresistance measurements of n- and p-doped germanium-tin (Ge1-y Sn y ) layers with Sn concentrations up to 8% show contributions arising from effects of weak localization for n-type and weak antilocalization for p-type doped samples independent of the Sn concentration. Calculations of the magnetoresistance using the Hikami-Larkin-Nagaoka model for two-dimensional transport allow us to extract the phase-coherence length for all samples as well as the spin-orbit length for the p-type doped samples. For pure Ge, we find phase-coherence lengths as long as (349.0 ± 1.4) nm and (614.0 ± 0.9) nm for n-type and p-type doped samples, respectively. The phase-coherence length decreases with increasing Sn concentration. From the spin-orbit scattering length, we determine the spin-diffusion scattering length in the range of 20-30 nm for all highly degenerate p-type doped samples irrespective of Sn concentration. These results show that Ge1-y Sn y is a promising material for future spintronic applications.

6.
Chemistry ; 25(62): 14246-14252, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31478589

RESUMO

Little is known about the chemistry of the 2-arsaethynolate anion, but to date it has exclusively undergone fragmentation reactions when reduced. Herein, we report the synthesis of [U(TrenTIPS )(OCAs)] (2, TrenTIPS =N(CH2 CH2 NSiiPr3 )3 ), which is the first isolable actinide-2-arsaethynolate linkage. UV-photolysis of 2 results in decarbonylation, but the putative [U(TrenTIPS )(As)] product was not isolated and instead only [{U(TrenTIPS )}2 (µ-η2 :η2 -As2 H2 )] (3) was formed. In contrast, reduction of 2 with [U(TrenTIPS )] gave the mixed-valence arsenido [{U(TrenTIPS )}2 (µ-As)] (4) in very low yield. Complex 4 is unstable which precluded full characterisation, but these photolytic and reductive reactions testify to the tendency of 2-arsaethynolate to fragment with CO release and As transfer. However, addition of 2 to an electride mixture of potassium-graphite and 2,2,2-cryptand gives [{U(TrenTIPS )}2 {µ-η2 (OAs):η2 (CAs)-OCAs}][K(2,2,2-cryptand)] (5). The coordination mode of the trapped 2-arsaethynolate in 5 is unique, and derives from a new highly reduced and bent form of this ligand with the most acute O-C-As angle in any complex to date (O-C-As ∠ ≈128°). The trapping rather than fragmentation of this highly reduced O-C-As unit is unprecedented, and quantum chemical calculations reveal that reduction confers donor-acceptor character to the O-C-As unit.

7.
RSC Adv ; 9(42): 24066-24073, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35527863

RESUMO

The scalability and stability of molecular qubits deposited on surfaces is a crucial step for incorporating them into upcoming electronic devices. Herein, we report on the preparation and characterisation of a molecular quantum bit, copper(ii)dibenzoylmethane [Cu(dbm)2], deposited by a modified Langmuir-Schaefer (LS) technique onto a graphene-based substrate. A double LS deposition was used for the preparation of a few-layer-graphene (FLG) on a Si/SiO2 substrate with subsequent deposition of the molecules. Magnetic properties were probed by high-frequency electron spin resonance (HF-ESR) spectroscopy and found maintained after deposition. Additional spectroscopic and imaging techniques, such as Raman spectroscopy (RS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were performed to characterise the deposited sample. Our approach demonstrated the possibility to utilise a controlled wet-chemistry protocol to prepare an array of potential quantum bits on a disordered graphene-based substrate. The deployed spectroscopic techniques showed unambiguously the robustness of our studied system with a potential to fabricate large-scale, intact, and stable quantum bits.

8.
Adv Sci (Weinh) ; 5(7): 1800257, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30027057

RESUMO

The controlled manipulation of the spin and charge of electrons in a semiconductor has the potential to create new routes to digital electronics beyond Moore's law, spintronics, and quantum detection and imaging for sensing applications. These technologies require a shift from traditional semiconducting and magnetic nanostructured materials. Here, a new material system is reported, which comprises the InSe semiconductor van der Waals crystal that embeds ferromagnetic Fe-islands. In contrast to many traditional semiconductors, the electronic properties of InSe are largely preserved after the incorporation of Fe. Also, this system exhibits ferromagnetic resonances and a large uniaxial magnetic anisotropy at room temperature, offering opportunities for the development of functional devices that integrate magnetic and semiconducting properties within the same material system.

9.
Chem Sci ; 9(5): 1221-1230, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29675167

RESUMO

Tetraoxolene radical-bridged lanthanide SMM systems were prepared for the first time by reduction of the respective neutral compounds. Magnetic measurements reveal the profound influence of the radical center on magnetic behavior. Strong magnetic couplings are revealed in the radical species, which switch on SMM behavior under zero applied field for DyIII and TbIII compounds. HFEPR spectra unravel the contributions of the magnetic coupling and the magnetic anisotropy. For GdIII this results in much more accurate magnetic coupling parameters with respect to bulk magnetic measurements.

10.
Materials (Basel) ; 10(3)2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28772606

RESUMO

Static and dynamic magnetic properties of the tetracoordinate CoII complex [Co(CH3-im)2Cl2], (1, CH3-im = N-methyl-imidazole), studied using thorough analyses of magnetometry, and High-Frequency and -Field EPR (HFEPR) measurements, are reported. The study was supported by ab initio complete active space self-consistent field (CASSCF) calculations. It has been revealed that 1 possesses a large magnetic anisotropy with a large rhombicity (magnetometry: D = -13.5 cm-1, E/D = 0.33; HFEPR: D = -14.5(1) cm-1, E/D = 0.16(1)). These experimental results agree well with the theoretical calculations (D = -11.2 cm-1, E/D = 0.18). Furthermore, it has been revealed that 1 behaves as a field-induced single-ion magnet with a relatively large spin-reversal barrier (Ueff = 33.5 K). The influence of the Cl-Co-Cl angle on magnetic anisotropy parameters was evaluated using the CASSCF calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...